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Scheme 1. Kinetic resolution of 1-phenylethanol (rac
(�)-3.
The parallel kinetic resolution of racemic 1-phenylethanol using an equimolar combination of quasi-
enantiomeric 2-arylpropionic and butanoic acids mediated by a N,N0-dicyclohexylcarbodiimide (DCC)/
3,5-lutidine coupling is discussed. The levels of diastereoselectivity were high leading to separable
quasi-enantiomeric esters in good yield.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 2. Kinetic resolution of 1-phenylethanol (rac)-1 using the chiral mediator
(�)-(Sa)-4.
The kinetic resolution of secondary alcohols by enantioselective
alkyl and arylcarbonyl transfer involving stoichiometric and sub-
stoichiometric chiral mediators is well documented.1 One non-
enzymatic approach that has attracted significant attention has
been the use of chiral 4-dimethylaminopyridine (DMAP) equiva-
lents2 as sub-stoichiometric mediators.3 Fu and co-workers have
reported the use of a planar-chiral iron complex (�)-34 as a sub-
stoichiometric chiral mediator for the kinetic resolution of 1-phen-
ylethanol (rac)-1 using acetic anhydride as an acyl transfer motif
(Scheme 1).5 This process was shown to be highly enantiomer-
selective when performed in t-amyl alcohol (2-methylbutan-2-ol)
allowing the unreacted 1-phenylethanol (S)-1 to be isolated with
99% ee by enantioselective acetylation of its (R)-enantiomer [(R)-
1] to give the corresponding acetate (R)-2 (selectivity factor,
s = 43 at 55% conversion)6 (Scheme 1).5

In comparison, Spivey and co-workers have developed a related
resolution for 1-phenylethanol (rac)-1 using a chiral atropisomeric
DMAP equivalent (�)-(Sa)-4 (Scheme 2).7 However, they chose to
resolve (rac)-1 by sequential enantioselective acetylation of its
(R)-enantiomer 1 [to give the enantiomerically enriched acetate
ll rights reserved.

: +44 1482 466410.
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)-1 using the chiral mediator
(R)-2 (with 90% ee) and the partially resolved 1-phenylethanol
(S)-1 (6% ee)], followed by simple hydrolysis/transesterification
with NaOH in MeOH to give the target 1-phenylethanol (R)-1 with
90% ee (s = 22 at 6% conversion) (Scheme 2).7 The low enantiomeric
excess for the resolved 1-phenylethanol (S)-1 was due to the low
percentage conversion for this resolution.

Vedejs and co-workers focused8 their attention on the use of a
stoichiometric chiral pyridinium chloride (R)-6 as an efficient acti-
vated chiral DMAP equivalent for the resolution of (rac)-1 in the
presence of anhydrous zinc chloride (as a Lewis acid) and triethyl-
amine (as the Brønsted base) (Scheme 3). However, this methodol-
ogy relied on the pre-formation of the active pyridinium chloride
(R)-6 [formed by addition of trichlorobutyl chloroformate to the
chiral DMAP equivalent (R)-5] prior to the resolution of (rac)-1.8

This acyl transfer reagent was shown to be highly (S)-enantiomer
selective towards (rac)-1, giving the corresponding ester (S)-7 with
93% ee (s = 38 at 25% conversion) (Scheme 3).8
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As a way of increasing the levels of enantiomer selection, Vedejs
devised a novel parallel kinetic resolution strategy9 for the removal
of both enantiomers in parallel by using a combination of two com-
plementary chiral pyridinium chlorides (R)-6 and (S,S)-8 (Scheme
4).10 Addition of these two quasi-enantiomeric11 pyridinium chlo-
rides (R)-6 and (S,S)-8 to a stirred solution of a racemic secondary
alcohol [e.g., 1-(1-methylphenyl)ethanol (rac)-9] in the presence of
magnesium dibromide and triethylamine gave two complemen-
tary esters (S)-10 and (S,R)-11, respectively, in good yield with
excellent levels of enantiomeric/diastereoisomeric excess (Scheme
4). By performing this double kinetic resolution in situ, this process
removed the inherent concentration effect (present in a single
kinetic resolution) thereby improving the relative enantio- and
diastereoisomeric outcomes.10

Over the last few years, we have been interested in the parallel
kinetic resolution of 1-phenylethanol (rac)-1 using quasi-enantio-
meric combinations of stoichiometric active esters (S)-12 and
(R)-13,12 and oxazolidin-2-ones (S,R)-syn-14 and (R,S)-syn-1513 as
complementary acyl transfer reagents to give the corresponding
esters (S,S)-anti-16 and (R,R)-syn-17 with some success (Scheme 5).

In an attempt to improve these levels of diastereoselection, we
were interested in developing a diastereoselective N,N0-dicyclohex-
ylcarbodiimide (DCC) coupling procedure14 for the synthesis of
esters, such as 16, which utilised the in situ formation of (quasi-
enantiomeric) chiral pyridinium salts, such as 20, derived from
the corresponding chiral carboxylic acid, for example, 2-phenyl-
propionic acid (rac)-19 and achiral pyridine 18 (Scheme 6). To this
end, we report our study into the use of quasi-enantiomeric 2-aryl-
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Scheme 4. Parallel kinetic resolution of 1-(1-methylphenyl)ethanol (rac)-9 using
pyridinium chlorides (R)-6 and (S,S)-8.
propionic and butanoic acids as complementary diastereoselective
alkyl-carbonyl transfer components for the parallel kinetic resolu-
tion of 1-phenylethanol (rac)-1 using a DCC coupling procedure15

involving 3,5-lutidine 18 as a covalent nucleophilic mediator and
stereochemical directing pro-leaving group.

For our study, we first probed the mutual kinetic resolution of
2-phenylpropionic acid (rac)-19 with an equimolar amount of
racemic 1-phenylethanol 1 using our proposed DCC/3,5-lutidine
coupling protocol in order to determine the relative levels of com-
plementary recognition (Schemes 6 and 7). Addition of (rac)-1 to a
stirred solution of (rac)-19, DCC and 3,5-lutidine 1816 in dichloro-
methane gave after 12 h an inseparable diastereoisomeric mixture
of esters (rac)-anti- and (rac)-syn-16 in 69% yield with 66% de
(Scheme 7).17 The levels of stereocontrol were determined by 1H
NMR spectroscopy (400 MHz) by integration of the corresponding
methyl doublets in (rac)-anti- and (rac)-syn-16.18 Interestingly,
without the addition of 18, self-coupling of (rac)-19 occurs pre-
dominantly to give the corresponding anhydrides (rac)-anti- and
(meso)-syn-21 as an inseparable equimolar mixture in 95% yield
(Scheme 7). The formation of the esters (rac)-anti- and (rac)-syn-
16 must proceed either via addition of 3,5-lutidine 18 to the
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intermediate isourea [derived from addition of DCC to (rac)-19]
and/or the anhydride 21. This reaction does not proceed via inter-
mediate ketene formation, as each diastereoisomer [e.g., (S,S)-anti-
16] can be synthesised stereospecifically (�94% de) by coupling 2-
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Scheme 8. Mutual kinetic resolution of 1-phenylethanol (rac)-1 using carboxylic
acids (rac)-22–27 mediated by DCC and 3,5-lutidine.
phenylpropionic acid (S)-19 (96% ee) with 1-phenylethanol (S)-1
(>97% ee) in 48% yield.

Our attention next turned to finding a complementary partner
for our original carboxylic acid, 2-phenylpropionic acid 19. For this
study, we chose to investigate the mutual kinetic resolution of a
small series of structurally related racemic 2-aryl-propionic and
butanoic acids (rac)-22, (rac)-23, (rac)-24, (rac)-25, (rac)-26 and
(rac)-27 with 1-phenylethanol (rac)-1 under our standard DCC/
3,5-lutidine conditions (Scheme 8). Treatment of these 2-aryl-pro-
pionic and butanoic acids with 1-phenylethanol in the presence of
DCC and 3,5-lutidine gave the corresponding esters (rac)-anti- and
(rac)-syn-28 [in 59% yield with 70% de (ratio 85:15)], (rac)-anti-
and (rac)-syn-29 [in 64% yield with 70% de (ratio 85:15)], (rac)-
anti- and (rac)-syn-30 [in 60% yield with 70% de (ratio 85:15)],
(rac)-anti- and (rac)-syn-31 [in 63% yield with 58% de (ratio
79:21)], (rac)-anti- and (rac)-syn-32 [in 56% yield with 68% de (ra-
tio 84:16)] and (rac)-anti- and (rac)-syn-33 [in 50% yield with 64%
de (ratio 82:18)] with near equal levels of diastereoselection
(Scheme 8). The only exception was the carboxylic acid (rac)-25
which was less diastereoselective (58% de) (Scheme 8).

With this information at hand, we next turned our attention to
probing the parallel kinetic resolution of (rac)-1 using two combi-
nations of enantiomerically pure quasi-enantiomeric carboxylic
acids (R)-22 and (S)-19, and (R)-22 and (S)-26 as shown in Schemes
9 and 10, respectively. Treatment of a solution of (rac)-1, DCC and
3,5-lutidine in dichloromethane with an equimolar amount of
carboxylic acids (R)-22 and (S)-19, and (R)-22 and (S)-26 gave the
corresponding inseparable mixtures of diastereoisomeric esters
(R,R)-anti- and (R,S)-syn-28 [in 71% yield with 68% de (ratio
84:16) for (R)-22] and (S,S)-anti- and (S,R)-syn-16 [in 72% yield with
66% de (ratio 83:17) for (S)-19], and (R,R)-anti- and (R,S)-syn-28 [in
55% yield with 66% de (ratio 83:17) for (R)-22] and (S,S)-anti- and
(S,R)-syn-32 [in 67% yield with 68% de (ratio 84:16) for (S)-26],
respectively, in good yields, with good to excellent levels of
diastereocontrol (up to 68% de) (Schemes 9 and 10). These levels
of complementary stereocontrol were near identical to their corre-
sponding mutual kinetic resolution (as shown in Scheme 8).

For the remainder of our study, we chose to use the more polar
naproxen (S)-27 as a complementary component due to its known
separability from related profen-derived adducts.12,13 Treatment of
an equimolar combination of (R)-22 and (S)-27 with (rac)-1, DCC
and 3,5-lutidine in dichloromethane gave a separable mixture of
diastereoisomeric adducts (R,R)-anti- and (R,S)-syn-28 [in 64% yield
with 72% de (ratio 86:14) for (R)-22] and (S,S)-anti- and (S,R)-syn-
33 [in 58% yield with 64% de (ratio 82:18) for (S)-27] (Scheme 11).
The complementary esters (R,R)-anti- and (R,S)-syn-28 were sepa-
rated efficiently from the more polar naproxen-derived esters
(S,S)-anti- and (S,R)-syn-33, by flash column chromatography on
silica gel, eluting with light petroleum ether (bp 40–60 �C)/diethyl
ether (1:1) (DRF = 0.16) (Scheme 11).

The configurational stability of this molecular recognition pro-
cess was studied using a pair of quasi-enantiomeric alcohols,
Ph Me

OH

H
(rac)-1

OH

O

Ph

Et

Ph
O

O Ph

Me

Et

(R,R)-anti-28

Ph
O

O Ph

Me

Et

(R,S)-syn-28(R)-22

3,5-lutidine 18
DCC, CH2Cl2, rt

84:16; 71%

OH

O

Ph

Me

Ph
O

O Ph

Me

Me

(S,S)-anti-16

Ph
O

O Ph

Me

Me

(S,R)-syn-16(S)-19 83:17; 72%

Scheme 9. Parallel kinetic resolution of 1-phenylethanol (rac)-1 using carboxylic
acids (R)-22 and (S)-19 mediated by DCC and 3,5-lutidine.



Ph Me

OH

H
(rac)-1

OH

O

Ph

Et

Ph
O

O Ph

Me

Et

(R,R)-anti-28

Ph
O

O Ph

Me

Et

(R,S)-syn-28(R)-22

3,5-lutidine 18
DCC, CH2Cl2, rt

83:17; 55%

OH

O

4-i-BuC6H4

Me

4-i-BuC6H4
O

O Ph

Me

Me

(S,S)-anti-32

4-i-BuC6H4
O

O Ph

Me

Me

(S,R)-syn-32(S)-26 84:16; 67%

Scheme 10. Parallel kinetic resolution of 1-phenylethanol (rac)-1 using carboxylic
acids (R)-22 and (S)-26 mediated by DCC and 3,5-lutidine.

Ph Me

OH

H
(rac)-1

OH

O

Ph

Et

Ph
O

O Ph

Me

Et

(R,R)-anti-28

Ph
O

O Ph

Me

Et

(R,S)-syn-28(R)-22

3,5-lutidine 18
DCC, CH2Cl2, rt

86:14; 64%

OH

O

Ar

Me

Ar
O

O Ph

Me

Me

(S,S)-anti-33

Ar
O

O Ph

Me

Me

(S,R)-syn-33(S)-27 82:18; 58%
Ar = 6-methoxynaphthalen-2-yl

Scheme 11. Parallel kinetic resolution of 1-phenylethanol (rac)-1 using carboxylic
acids (R)-22 and (S)-27 mediated by DCC and 3,5-lutidine.

Ph Me

OH

(R)-1

OH

O
Ph

Et

Ph
O

O Ph

Me
Et

(R,R)-anti-28

Ph
O

O Np

Me
Et

(R,S)-syn-35(R)-22

3,5-lutidine 18
DCC, CH2Cl2, rt

82:18; 44%

OH

O
Ar

Me

Ar
O

O Np

Me
Me

(S,S)-anti-36

Ar
O

O Ph

Me
Me

(S,R)-syn-33(S)-27 83:17; 65%
Ar = 6-methoxy-
       naphthalen-2-yl

Np Me

OH

Np = naphthalen-2-yl

(S)-34

O

O
Ar

Me

Ph

Me

(R,R)-anti-33

O

O
Ph

Et

Np

Me

(S,S)-anti-35

Scheme 12. Parallel kinetic separation of alcohols (R)-1 and (S)-34 using carboxylic
acids (R)-22 and (S)-27 mediated by DCC and 3,5-lutidine.

Ph
O

O Ph

Me

Et

(R,R)-anti-28; 72% d.e.

Ar
O

O Ph

Me

Me

(S,S)-anti-33; 64% d.e.

LiAlH4 Ph
OH

Et

(R)-37; 90%

HO

Ph

Me

(R)-1; 47%

72% e.e.18

LiAlH4 Ar
OH

Me

(S)-38; 81%

HO

Ph

Me

(S)-1; 55%

64% e.e.18

THF

Ar = 6-methoxynaphthalen-2-yl

THF

Scheme 13. Reduction of esters (R,R)-anti-28 and (S,S)-anti-33 to give enantiome-
rically enriched 1-phenylethanol 1.

4664 N. A. Shaye et al. / Tetrahedron Letters 49 (2008) 4661–4665
1-phenylethanol (R)-1 and 1-(naphthalen-2-yl)ethanol (S)-34 for
the mutual kinetic separation of 2-phenylbutanoic acid (R)-22
and 2-(6-methoxynaphthalen-2-yl)propionic acid (S)-27 (Scheme
12). Treatment of an equimolar mixture of quasi-enantiomeric car-
boxylic acids (R)-22 and (S)-27 with DCC and 3,5-lutidine in dichlo-
romethane, followed by the addition of a quasi-enantiomeric
mixture of alcohols (R)-1 and (S)-34, gave a mixture of distinct
and diastereoisomerically pure esters (R,R)-anti-28 and (R,S)-
syn-35 [ratio 82:18 relative to the (R)-configuration in 22], and
(S,S)-anti-36 and (S,R)-syn-33 [ratio 83:17 relative to the (S)-config-
uration in 27] (Scheme 12). These relative levels of mutual selectiv-
ity were determined by 400 MHz 1H NMR spectroscopy. From this
study it was evident that no racemisation of the carboxylic acids
(R)-22 and (S)-27 had occurred [due to the absence of the
diastereoisomeric esters (S,S)-anti-35 and (R,R)-anti-33] and that
no epimerisation of the products had occurred [due to the absence
of (S,R)-syn-28 and (R,S)-syn-36] (Scheme 12).

Access to both enantiomers of 1-phenylethanol 1 were achieved
by LiAlH4 reduction of the inseparable esters (R,R)-anti- and (R,S)-
syn-28 (ratio 86:14; 72% de), and (S,S)-anti- and (S,R)-syn-33 (ratio
82:18; 64% de) to give the enantiomerically enriched 1-phenyl-
ethanol (R)-119 (in 47% yield with 72% ee) and (S)-119 (in 55% yield
with 64% ee), respectively (Scheme 13). The complementary pri-
mary alcohol (S)-38 was separated efficiently by flash column
chromatography on silica gel from 1-phenylethanol (S)-1 {DRF

[light petroleum ether (bp 40–60 �C)/diethyl ether (9:1)] = 0.20},
whereas, the remaining alcohol (R)-37 was only partially separable
from (R)-1.

In conclusion, we have developed a diastereoselective parallel
kinetic resolution approach for the resolution of 1-phenylethanol
(rac)-1, using an equimolar combination of quasi-enantiomeric
carboxylic acids [e.g., (R)-22 and (S)-27]. The levels of diastereo-
control were found to be excellent favouring the formation of the
corresponding esters (R,R)-anti-28 and (S,S)-anti-33 in good
yields.20 Simple reduction of adducts (R,R)-anti-28 and (S,S)-anti-
33 using LiAlH4 gave the corresponding enantiomerically enriched
(R)- and (S)-enantiomers of 1-phenylethanol 1. The nearest anal-
ogy to this study is the kinetic resolution of racemic secondary
alcohols using enantiomerically pure carboxylic acids mediated
by a N,N0-dicyclohexylcarbodiimide and DMAP coupling reported
by Yus and Heuman.14,21 They have shown that 1-phenylethanol
1 could be resolved to give modest enantiomeric excess (43% ee)
using (R)-2,4-dichlorophenoxypropionic acid as resolving compo-
nent. We are currently exploring the scope and a limitation of
our diastereoselective DCC coupling reaction and the outcomes
will be reported in due course.
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